1,774 research outputs found

    Pacific Basin Communication Study, volume 2

    Get PDF
    Users' meeting summary report, chronology of visits, economic data for forum countries, techniques used in the study, communication choices, existing resources in the Pacific Basin, and warc 79 region 3 rules and regulations were presented in volume 2

    Superconducting d-wave junctions: The disappearance of the odd ac components

    Full text link
    We study voltage-biased superconducting planar d-wave junctions for arbitrary transmission and arbitrary orientation of the order parameters of the superconductors. For a certain orientation of the superconductors the odd ac components disappear, resulting in a doubling of the Josephson frequency. We study the sensitivity of this disappearance to orientation and compare with experiments on grain boundary junctions. We also discuss the possibility of a current flow parallel to the junction.Comment: 5 pages, 3 figure

    Pacific Basin Communications Study, Volume 1

    Get PDF
    The Pacific Basin Communications Study describes and assesses extent telecommunications systems in the Pacific Islands region. The study examines user needs in terms of the development of social services and commercial activities. Alternative technological solutions to communications problems are proposed and described. Recommendations include the augmentation and improvement of existing systems allowing for increased communications capacity. Regional cooperation will be required to accommodate the specific, unique requirements of individual nations. Questions of financing, implementation, management, costs and benefits of a regional telecommunications system are discussed

    Berry's phase contribution to the anomalous Hall effect of gadolinium

    Full text link
    When conduction electrons are forced to follow the local spin texture, the resulting Berry phase can induce an anomalous Hall effect (AHE). In gadolinium, as in double-exchange magnets, the exchange interaction is mediated by the conduction electrons and the AHE may therefore resemble that of chromium dioxide and other metallic double-exchange ferromagnets. The Hall resistivity, magnetoresistance, and magnetization of single crystal gadolinium were measured in fields up to 30 T. Measurements between 2 K and 400 K are consistent with previously reported data. A scaling analysis for the Hall resistivity as a function of the magnetization suggests the presence of a Berry's-phase contribution to the anomalous Hall effect.Comment: 6 pages, 7 figures, submitted to Phys. Rev.

    c-axis magnetotransport in CeCoIn5_{5}

    Full text link
    We present the results of out-of-plane electrical transport measurements on the heavy fermion superconductor CeCoIn5_{5} at temperatures from 40 mK to 400 K and in magnetic field up to 9 T. For T<T < 10 K transport measurements show that the zero-field resistivity ρc\rho_{c} changes linearly with temperature and extrapolates nearly to zero at 0 K, indicative of non-Fermi-liquid (nFL) behavior associated with a quantum critical point (QCP). The longitudinal magnetoresistance (LMR) of CeCoIn5_{5} for fields applied parallel to the c-axis is negative and scales as B/(T+T)B/(T+T^{*}) between 50 and 100 K, revealing the presence of a single-impurity Kondo energy scale T2T^{*} \sim 2 K. Beginning at 16 K a small positive LMR feature is evident for fields less than 3 tesla that grows in magnitude with decreasing temperature. For higher fields the LMR is negative and increases in magnitude with decreasing temperature. This sizable negative magnetoresistance scales as B2/TB{^2}/T from 2.6 K to roughly 8 K, and it arises from an extrapolated residual resistivity that becomes negative and grows quadratically with field in the nFL temperature regime. Applying a magnetic field along the c-axis with B >> Bc2_{c2} restores Fermi-liquid behavior in ρc(T)\rho_{c}(T) at TT less than 130 mK. Analysis of the T2T{^2} resistivity coefficient's field-dependence suggests that the QCP in CeCoIn5_{5} is located \emph{below} the upper critical field, inside the superconducting phase. These data indicate that while high-TT c-axis transport of CeCoIn5_{5} exhibits features typical for a heavy fermion system, low-TT transport is governed both by spin fluctuations associated with the QCP and Kondo interactions that are influenced by the underlying complex electronic structure intrinsic to the anisotropic CeCoIn5_{5} crystal structure

    The chiral Anomalous Hall effect in re-entrant AuFe alloys

    Full text link
    The Hall effect has been studied in a series of AuFe samples in the re-entrant concentration range, as well as in part of the spin glass range. An anomalous Hall contribution linked to the tilting of the local spins can be identified, confirming theoretical predictions of a novel topological Hall term induced when chirality is present. This effect can be understood in terms of Aharonov-Bohm-like intrinsic current loops arising from successive scatterings by canted local spins. The experimental measurements indicate that the chiral signal persists, meaning scattering within the nanoscopic loops remains coherent, up to temperatures of the order of 150 K.Comment: 7 pages, 11 eps figures Published version. Minor change

    Harmonic lattice behavior of two-dimensional colloidal crystals

    Full text link
    Using positional data from video-microscopy and applying the equipartition theorem for harmonic Hamiltonians, we determine the wave-vector-dependent normal mode spring constants of a two-dimensional colloidal model crystal and compare the measured band-structure to predictions of the harmonic lattice theory. We find good agreement for both the transversal and the longitudinal mode. For q0q\to 0, the measured spring constants are consistent with the elastic moduli of the crystal.Comment: 4 pages, 3 figures, submitte

    ac Josephson effect in superconducting d-wave junctions

    Full text link
    We study theoretically the ac Josephson effect in superconducting planar d-wave junctions. The insulating barrier assumed to be present between the two superconductors may have arbitrary strength. Many properties of this system depend on the orientation of the d-wave superconductor: we calculate the ac components of the Josephson current. In some arrangements there is substantial negative differential conductance due to the presence of mid-gap states. We study how robust these features are to finite temperature and also comment on how the calculated current-voltage curves compare with experiments. For some other configurations (for small barrier strength) we find zero-bias conductance peaks due to multiple Andreev reflections through midgap states. Moreover, the odd ac components are strongly suppressed and even absent in some arrangements. This absence will lead to a doubling of the Josephson frequency. All these features are due to the d-wave order parameter changing sign when rotated 9090^{\circ}. Recently, there have been several theoretical reports on parallel current in the d-wave case for both the stationary Josephson junction and for the normal metal-superconductor junction. Also in our case there may appear current density parallel to the junction, and we present a few examples when this takes place. Finally, we give a fairly complete account of the method used and also discuss how numerical calculations should be performed in order to produce current-voltage curves

    Anomalous f-electron Hall Effect in the Heavy-Fermion System CeTIn5_{5} (T = Co, Ir, or Rh)

    Full text link
    The in-plane Hall coefficient RH(T)R_{H}(T) of CeRhIn5_{5}, CeIrIn5_{5}, and CeCoIn5_{5} and their respective non-magnetic lanthanum analogs are reported in fields to 90 kOe and at temperatures from 2 K to 325 K. RH(T)R_{H}(T) is negative, field-independent, and dominated by skew-scattering above \sim 50 K in the Ce compounds. RH(H0)R_{H}(H \to 0) becomes increasingly negative below 50 K and varies with temperature in a manner that is inconsistent with skew scattering. Field-dependent measurements show that the low-T anomaly is strongly suppressed when the applied field is increased to 90 kOe. Measurements on LaRhIn5_{5}, LaIrIn5_{5}, and LaCoIn5_{5} indicate that the same anomalous temperature dependence is present in the Hall coefficient of these non-magnetic analogs, albeit with a reduced amplitude and no field dependence. Hall angle (θH\theta_{H}) measurements find that the ratio ρxx/ρxy=cot(θH)\rho_{xx}/\rho_{xy}=\cot(\theta_{H}) varies as T2T^{2} below 20 K for all three Ce-115 compounds. The Hall angle of the La-115 compounds follow this T-dependence as well. These data suggest that the electronic-structure contribution dominates the Hall effect in the 115 compounds, with ff-electron and Kondo interactions acting to magnify the influence of the underlying complex band structure. This is in stark contrast to the situation in most 4f4f and 5f5f heavy-fermion compounds where the normal carrier contribution to the Hall effect provides only a small, T-independent background to RH.R_{H}.Comment: 23 pages and 8 figure
    corecore